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The issue

As with previous critiques of voxel-based morphometry (e.g.,

see Bookstein, 2001, Mehta et al., 2003), Christos Davatzikos

(2004) reprises issues that have engaged the functional neuro-

imaging community for many years. In this instance, the issue

is the distinction between multivariate and mass-univariate

analyses of imaging data. Put simply, Davatzikos is pointing

out that pathology can be expressed, anatomically, in a distrib-

uted and complicated fashion over the brain. Critically, its

expression in one part of the brain may depend on its

expression elsewhere. Characterizing these interregional depen-

dencies requires a multivariate model (e.g., see Ashburner et al.,

1998; Bookstein, 1984) of how pathology causes anatomical

changes. In the former example, canonical variates analysis

(CVA1) was used to assess gender differences using deforma-

tion-based morphometry. Deformation-based morphometry rep-

resents an analysis of the deformation fields that spatially

normalize images. However, differences in brain anatomy may

not be completely encoded by these deformations; local struc-

tural differences may persist after spatial normalization. Voxel-

based morphometry (VBM) was introduced to characterize these

differences.
Voxel-based morphometry

Voxel-based morphometry is the application of statistical

parametric mapping to (spatially normalized, scalar) images that

index some aspect of local brain structure, for example, grey

matter density following segmentation or compression maps

based on the Jacobian of deformation fields. As such, VBM uses
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a mass-univariate approach. VBM was proposed and designed for

the analysis of regionally specific differences in structural indices.

The nature of these indices and ensuing interpretation depends

upon the preprocessing of images (e.g., segmentation) before

VBM.

By definition, regionally specific effects do not depend on

changes elsewhere. This is a fundament of mass-univariate

approaches. Consequently, VBM is not used to characterize inter-

regional dependencies. VBM is a simple procedure that enables

classical inferences about the regionally specific effects of exper-

imental factors on some structural measure. These effects are tested

for after discounting gross anatomical differences that are removed

by spatial normalization.

Because gross differences have been removed, VBM is not a

surrogate for classical volumetric analysis of well-defined ana-

tomical structures or lesions (see Mehta et al., 2003). Further-

more, because VBM is voxel-based, differences in the shape or

form of large structures are discounted by the requisite normal-

ization. This means VBM will never replace careful applications

of shape analysis and modeling to computational neuroanatomy

(e.g., see Davies et al., 2002; Pitiot et al., 2002). In short, VBM

represents an established and effective complement to shape and

volumetric analyses (and deformation-based morphometry) that

is now used widely in many basic and clinical contexts (see

Fig. 1).
Distributed versus dependent

It is important to distinguish between the presence of distrib-

uted effects over the brain and dependencies among these effects. It

is perfectly possible for VBM to detect a distributed pattern of

regionally specific effects. However, VBM is not appropriate for

the analysis of statistical dependencies among measures from

different regions. The example shown in Fig. 1 (left-hand panel)

of Davatzikos’s paper is, in fact, a rather bad example to use from

his point of view. This is a linear treatment effect that is distributed

over voxels 1 and 2. With sufficient sensitivity, VBM would

properly characterize the distributed nature of this difference as

an effect in both voxels (just because the marginal distributions

overlap does not mean there is no significant difference in the

distributions).

However, note that within both the normal and patient groups,

there is a negative correlation between the measures in voxels 1



Fig. 1. Instances of PubMedn results for ‘‘Voxel-based Morphometry’’ and

‘‘MRI.’’ For comparison with another important method, equivalent search

results are provided for ‘‘Structural Equation Modeling’’ and fMRI.
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and 2. This means that the probability distribution of the voxel 1

measure depends upon the measure in voxel 2 (see Fig. 2a). These

negative correlations could only be assessed with a multivariate (2-

voxel) model, for example, CVA. These dependencies are

expressed as covariances among the error terms as indicated in

Fig. 2b (cf. left and middle panels: to simplify things, only one

group is shown, which could also represent case-controlled differ-

ences). Identification of distributed spatial modes that discriminate

among pathological cohorts using CVA has a long history in

neuroimaging (e.g., see Friston et al., 1992). In summary, the
Fig. 2. (a) Schematic highlighting how the distribution of values in voxel
central issue is the distinction between multivariate and mass-

univariate approaches in accommodating interregional dependen-

cies in structural and functional data. We now focus on this

distinction.
Multivariate versus mass-univariate

In functional anatomy, this dichotomy is closely related to the

distinction between functional specialization and functional inte-

gration in the brain. Most analyses of neuroimaging data are

predicated on the specialization or segregation model and are

happy to limit their inferences to regionally specific effects using

univariate approaches. The alternative is to characterize treat-

ment-related responses in one brain area, in relation to responses

elsewhere. This calls for multivariate models that are usually

framed in terms of functional or effective connectivity. Multivar-

iate analyses of neuroimaging data can range from the very

simple, such as eigenimage (PCA) analysis to complicated

nonlinear (i.e., bilinear) models such as dynamic causal model-

ing. One important distinction between these multivariate

approaches is whether they are linear or nonlinear. This speaks

to the interesting situation depicted in Fig. 3 of Davatzikos’s

paper where the separatrix is nonlinear. The distinction between

linear and nonlinear models is also illustrated in Fig. 2b (middle

and right panels). In the past decade, many nonlinear multivariate

models have been explored in the context of functional neuro-

imaging, including neural networks (Lautrup et al., 1994),
2 depends on the value in voxel 1. (b) Different classes of model.



Fig. 3. Schematic illustrating the relation between generative/recognition models and multivariate/mass-univariate formulations.
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nonlinear PCA (Friston et al., 1999), and support vector

machines (Cox and Savoy, 2003). The notion of applying these

techniques to structural data is a compelling one.
Using VBM to assess interregional dependencies

Usually, interregional dependencies are accommodated by

treating the region as a factor in multivariate statistical models

and looking for region � treatment interactions. However, there are

ways of using univariate VBM to assess these sorts of effects. This

entails using the response variable in one region as an explanatory

variable for other regions. For example, to test for the negative

correlations in Fig. 2b (middle panel), one would simply construct

an SPM using the measures in voxel 1 over subjects as a repressor

or explanatory variable. To assess significant differences in the

regression slopes of voxel 2 on voxel 1 between two groups, one

would test for a voxel 1 � treatment interaction. (cf., psychophys-

iological interactions). Nonlinearities are easily accommodated

using polynomial or other expansions of structural measures in

the index region. These sorts of analyses are standard practice in

functional imaging, which suggests that a careful modeling of

structural data with standard univariate techniques may be a useful

first step.
Characterization versus classification

Finally, Davatzikos makes an important point that procedures

for making statistical inferences about regionally specific effects

(i.e., VBM) are not necessarily the best for classifying patients.

This is absolutely right. VBM is a research tool that enables people

to ask specific questions of their data. It is not a diagnostic or

classification device. Although there is a close mathematical

relationship between CVA and discriminant function analysis, the

objectives of classification procedures based on discriminant

function analysis, support vector machines, and related Bayesian

decision procedures are different from hypothesis testing. VBM is

used to ask well-defined questions about how developmental or

disease processes affect anatomy: It facilitates a mechanistic

understanding of these processes. It is not concerned with how

anatomical differences can be used to predict diagnosis.
Although distinct, the multivariate and classification issues are

related. When analyzing data, one is implicitly trying to link the

observed data to their causes. From a machine-learning perspec-

tive, this link rests upon a model of how causes generate data

(generative models) or how data disclose their causes (recognition

models). As indicated in Fig. 3, generative and recognition models

are the inverse of each other. In short, one can make inferences

about the causes of data h (e.g., embodied in a design matrix) by

estimating the parameters b of a generative model, which best

predict the data. Alternatively, one can estimate the parameters of a

recognition model, which best predict the causes. The former

approach is generally used to characterize and make inferences

about causes in the context of a model that specifies exactly how

those causes are manifested in data. The second is concerned with

recognizing the underlying causes, given some new data (the test

data), using model parameters b that are learned during training on

some old data (the training data).

The key point here is that generative models can be multivariate

or mass-univariate (i.e., a model of how pathology is expressed at

each brain location). Conversely, recognition generally requires

multivariate models. This is because interactions among regional

measures (nonlinearities in the recognition model) are precluded in

mass-univariate approaches (see Fig. 3). Having said this, in the

special case of no spatial dependencies (e.g., the left panel of Fig.

2b), the mass-univariate models can be considered jointly in a

recognition model because information from one part of the brain

adds linearly with information from another. However, generally,

one would use a multivariate model.

Given that both generative models and recognition models

are used to make inferences about causes, and one is simply the

inverse of the other, why are they fundamentally different? They

are different because one cannot necessarily invert the genera-

tive model, which we know exists, to obtain a unique recog-

nition model. SVM and related approaches rest on the

assumption that the recognition model exists. However, in some

cases, it does not. To make this clear, consider the following

contrived example. A number of neuropsychiatric disorders are

associated with expanded trinucleotide repeats. For example,

Fragile X Syndrome is thought to occur when there are more

than 200 cytosine–guanine–guanine repeats. Suppose we

wanted to test the hypothesis that parahippocampal grey matter

density showed an inverted ‘‘U’’ dependency on the number of
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repeats (after mean correction) in a cohort of premutation

carriers. Here, the generative model would be y = G(h,b) =

h2b + e, and we could perform a simple VBM analysis to test

the alternate hypothesis that b < 0. However, this generative

model is not invertible, which means there is no recognition

model that could infer the number of repeats, given para-

hippocampal grey matter density y; i.e., h ¼ Rðy; bÞ ¼ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� eÞ=b

p
. This example highlights the role of generative

models in testing mechanistic hypotheses in terms of quantities

that control the expression of causes. In contradistinction,

recognition models try to infer the causes (e.g., classify) given

the data. In these models, the parameters have no physical

meaning unless the corresponding generative model is invertible.

This distinction is one reason why recognition models are

seldom encountered in the scientific literature. In radiology,

the converse is true. Indeed, the divide between causal and

recognition models is evident at the level of neuroscientific

groups (note the complete absence of overlap between the

program committees of MICCA 2004 Medical Image Comput-

ing and Computer Assisted Intervention (http://miccai.irisa.fr/

index2.php) and the Organization of Human Brain Mapping

2004 (http://www.conferences.hu/hbm2004/). In summary, if one

wants to classify or recognize underlying causes of data,

univariate approaches like VBM are not appropriate. Converse-

ly, if one wants to make inferences about how data are caused,

VBM is entirely sufficient.
Summary

In conclusion, there is a clear distinction between multivariate

and mass-univariate characterizations of brain imaging data. The

application of standard univariate approaches to structural data,

namely VBM, has proved extremely successful. Part of this success

can be explained by the fact that VBM allows researchers to frame

and report their analyses in terms of regionally specific effects that

refer directly to structure–function relationships. The main point

made by Davatzikos is that complementary multivariate techniques

from functional brain imaging and machine learning may also find a

useful role and, when used as recognition models, are necessary.

On balance, there is more agreement than disagreement

between the commentary and our response. In summary, both
papers agree that VBM, on its own, is not a tool for charac-

terizing the spatial interdependencies of subtle distributed

effects, and both discuss multivariate tools in this context.

Furthermore, both agree that consideration of nonlinear models

of dependencies is important. What we have brought to the

argument is a clear conceptual distinction between various aims

of data analysis that we have framed in terms of generative and

recognition models.
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